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Abstract

In this paper, we explore novel approaches to the design of neural network architectures with a minimal number
of learnable parameters. Motivated by polynomial regression models, where differential equation solutions can be
successfully estimated using only about 10 parameters, we present neural network architectures based on the Horner
scheme and Chebyshev polynomials, both consisting of a small parameter set. In the Horner-based network model,
we embed the initial conditions directly into the architecture, further reducing the number of learnable parameters
while preserving accuracy. These models demonstrate a performance advantage of nearly three orders of magnitude
over standard MLP neural networks and networks with periodic activation functions, despite requiring significantly
fewer parameters. We extend this idea through a spline-like approach, which reduces the approximation error while
introducing only a minimal increase in the number of parameters. This extension ensures continuity and smoothness
across subinterval boundaries, making it particularly effective in solving complex problems. Additionally, we apply
the Horner-based approach to solve partial differential equations (PDEs), specifically the heat equation. Even with
a small number of learnable parameters, our method produces highly accurate solutions, demonstrating its potential
for efficient modeling of complex dynamic systems in computational science and engineering. By achieving high
accuracy with low computational complexity, our work paves the way for scalable and resource-efficient neural
network applications in various domains.

Index Terms

Neural networks, differential equations, Horner scheme

I. INTRODUCTION

Neural networks have found widespread applications in many domains, including biology [1], [2], medicine [3]–
[5], hyperspectral data analysis [6], and even creative fields such as music, art, and digital media [7]. Their ability
to recognize patterns and make predictions from vast and complex datasets has fundamentally transformed how we
address many scientific, technological, and creative challenges. Large Language Models [8] (LLMs), such as GPT
[9], [10], or DeepSeek [11], have seen unprecedented growth and innovation in recent years. These models, capable
of comprehending and generating human-like language with extraordinary accuracy, are opening new frontiers in
communication, education, research, and creative writing.

Physics-Informed Neural Networks [12]–[14] (PINNs) represent a powerful class of deep learning models
designed to solve problems governed by physical laws, often described by partial differential equations (PDEs)
or ordinary differential equations (ODEs). Unlike conventional neural networks, which primarily rely on data-
driven learning, PINNs embed known physical principles directly into the training process. This integration ensures
that the networks predictions adhere to the underlying laws of physics while simultaneously learning from observed
data. Traditional neural networks train by minimizing the difference between predictions and ground truth data, but
PINNs take this a step further by incorporating physics-based constraints directly into the loss function, creating
more reliable and physically accurate models.

Implicit Neural Representation (INR) is approach that encodes data, such as images, audio signals, or 3D objects,
using a neural network. [15]–[18] Here, the network itself acts as a continuous function, mapping input coordinates
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to the corresponding data values. Unlike traditional explicit methods that store data as discrete arrays (e.g., pixel
grids or voxel grids), INRs provide a compact, flexible, and resolution-independent way to represent and model
complex signals. This approach has a wide range of applications, including 3D scene representation, high-resolution
image reconstruction, and audio/video encoding. A particularly exciting application of INRs is in solving differential
equations by representing their solutions as continuous functions learned by neural networks. One common way to
implement this is using a Multilayer Perceptron (MLP), where the network learns the solution through coordinate
mappings. Activation functions like ReLU, Tanh, and Softplus are often employed in these architectures to capture
the underlying structures of the solutions. In [19], researchers have developed super-resolution frameworks to
generate grid-free solutions to PDEs, demonstrating the power of neural networks in avoiding the need for traditional
discretized grids. It has been shown that using periodic activation functions (such as sine and cosine) offers significant
advantages over traditional activation functions when representing high-frequency signals in applications like audio,
video, and 3D object modeling. These periodic functions also excel in solving complex differential equations by
accurately capturing oscillatory and periodic behaviors that other activations struggle to represent. [20] Tensor Neural
Networks, presented in [21], have also been developed to tackle PDEs, offering powerful architectures capable of
solving complex physical models. However, a common characteristic of most neural network-based approaches in
this domain is the large number of learnable parameters required for accurate modeling.

In this work, we address the challenge of network architecture design by proposing innovative methods to reduce
the number of learnable parameters while maintaining high accuracy and precision in solving differential equations.
Instead of relying solely on the loss function, we incorporate rules and constraints directly into the structure of
the neural network. Section II presents the notation used throughout this paper. Section III demonstrates solving
differential equations using standard MLP neural networks, which serve as a baseline for comparison. Section IV
introduces the motivation for our neural network architecture and paradigm, based on polynomial linear regression
models. Section V presents two novel neural network architectures: one inspired by the Horner scheme and another
based on Chebyshev polynomials. Section VI extends these models using a spline-like approach to further enhance
their flexibility and accuracy. Finally, Section VII concludes the paper with a summary of our findings and potential
future directions.

II. NOTATIONS/SETUP/TAK NE

The goal of this paper is to develop a novel paradigm in neural networks for solving differential equations.
Before proceeding, we describe the notation and assumptions.

We assume that the ordinary differential equation (ODE) of order n can be written as

F (t, x(t), x′(t), . . . , x(n)(t)) = G(u(t), u′(t), . . . , u(l)(t))

where x(t) is the unknown function and u(t) is a given input function. Since the input function is known, the
right-hand side is determined. Therefore, without any loss of generality, we assume that the problem is given by

F (t, x(t), x′(t), . . . , x(n)(t)) = u(t). (1)

To fully determine x(t), a set of initial conditions is necessary. In the theory of signals and systems, we often
assume n initial conditions at t = 0

x(i)(0) = xi, i = 0, 1, . . . , n− 1.

Later in this paper, these initial conditions will be utilized to simplify expressions.
Machine learning methods are inherently data-driven. In this paper, the data consists of a point cloud (tk, u(tk)), k =

1, 2, . . . ,M , obtained from the known input signal.
Throughout this paper, we will solve three different differential equations. The first one (referred to as Type a)

is
x′(t) + 2x(t) = 1,

x(0) = 1,

and its solution is x(t) = 1
2

(
1 + e−2t

)
.
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The second ODE (referred to as Type b) is

x′(t)x(t) = t,

x(0) = 1,

and its solution is x(t) =
√
t2 + 1.

The last one (referred to as Type c) is

x′′(t) + 4x′(t) + 13x(t) = 2,

x(0) = 0,

x′(0) = 1,

and its solution is
x(t) =

2

13
+ e−2t

(
3

13
sin(3t)− 2

13
cos(3t)

)
.

Note that Types a and c are linear ODEs, while Type b is nonlinear.

III. SOLVING ODE USING MLP NETS

We present the results of MLP networks with various activation functions (ReLU, sigmoid, and periodic activation
functions (SIREN)). We solve the differential equation of Type a using the following loss function

Lloss =
1

M

M∑
i=1

(
F (ti,N (ti),

d

dt
N (ti), ...,

dn

dtn
N (ti))− u(ti)

)2

+

n−1∑
j=0

λj

∣∣∣∣ djdtjN (0)− xj
∣∣∣∣

where N denotes the neural network model of the solution and (tk, u(tk)) represents the data point cloud. The first
term represents the MSE loss of the differential equation, while the second term enforces the initial conditions. For
the first-order differential equation (Type a), the second term simplifies to a single term for j = 0, as we have only
one initial condition.

For our first example, we employ an MLP network with 4 hidden layers, each containing 256 features, resulting
in a total of 263,937 learnable parameters. The activation function used is Leaky ReLU.

In the second example, we again use an MLP network with 4 hidden layers, but each layer has only 5 features,
giving a total of 106 learnable parameters. The activation function used in this case is the sigmoid function (logistic
function).

For the final example, we utilize a SIREN network with 4 hidden layers, each containing 5 features, resulting
in a total of 106 learnable parameters. The implementation is based on the official repository of ”Implicit Neural
Representations with Periodic Activation Functions,” available on GitHub1.

To train the neural networks, we employ the Adam optimizer. Starting learning rate is set to 10−3. The hyper-
parameter λ0 is set to 0.1. The networks are trained for 10,000 epochs. The data point cloud consists of a total
of M = 400 points. For neural networks with periodic activation functions, parameters are set according to the
specifications in [20].

The results from these examples are shown in Fig. 1. We plot the original function and its first two derivatives. We
observe that the MLP network with Leaky ReLU activation functions fails to accurately represent the solution. The
primary reason for this is that Leaky ReLU is not a differentiable function. Additionally, the second derivative of
the Leaky ReLU activation is zero almost everywhere, leading to the second derivative of the implicit representation
being a zero function when using this activation.

The results from examples 2 and 3, which utilize networks with 106 learnable parameters, serve as a baseline for
comparison with our proposed models. While the parameter count in these networks is relatively low compared to
traditional architectures, it is still significantly higher than the dozen or so parameters required by our approach. As
will be demonstrated in Section V, our proposed paradigm yields lower error rates despite using fewer parameters,
highlighting its efficiency and effectiveness in solving differential equations.

1https://github.com/vsitzmann/siren

https://github.com/vsitzmann/siren
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(a) Type a - MLP with Leaky ReLU -
solution

(b) Type a - MLP with Leaky ReLU -
first derivative

(c) Type a - MLP with Leaky ReLU -
second derivative

(d) Type a - MLP with Sigmoid - solu-
tion

(e) Type a - MLP with Sigmoid - first
derivative

(f) Type a - MLP with Sigmoid - second
derivative

(g) Type a - SIREN - solution (h) Type a - SIREN - first derivative (i) Type 1 - SIREN - second derivative

Fig. 1: Comparison of solutions and their derivatives predicted by the MLP neural networks with the exact solutions.

IV. MOTIVATION - LINEAR REGRESSION

As a motivation for the neural network architecture that we will discuss in Section V, we explore how to construct
the solution of a linear ordinary differential equation (ODE) with constant coefficients using a polynomial regression
model.

We begin by considering the following differential equation
n∑
i=0

aix
(i)(t) = u(t), (2)

where ai ∈ R. The polynomial P (t), representing the solution model, is given by

P (t) =

m∑
j=0

cj
tj

j!
. (3)
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Pay attention that it is an approximation of the analytic solution. Note that its derivatives are

P (l)(t) =

m∑
j=l

cj
tj−l

(j − l)!
, l = 0, 1, 2, . . . (4)

where cj are the unknown model parameters to be determined.
Assume that m ≥ n, meaning that the polynomial order is at least as high as the order of the differential equation.

Substituting the polynomial model P (t) into the differential equation yields

u(t) =

n∑
i=0

ai

m∑
j=i

cj
tj−i

(j − i)!
=

n∑
i=0

ai

n−1∑
j=i

cj
tj−i

(j − i)!
+

m∑
j=n

cj
tj−i

(j − i)!


=

n∑
i=0

ai

n−1∑
j=i

cj
tj−i

(j − i)!
+

n∑
i=0

ai

m∑
j=n

cj
tj−i

(j − i)!
.

(5)

Let’s incorporate the initial conditions x(i)(0) = xi. This leads to simplified conditions. From Eq. (4), we observe
that:

P (i)(0) = ci = xi = x(i)(0) for i = 0, 1, . . . , n− 1.

This formulation ensures that the polynomial model satisfies the initial conditions of the differential equation,
providing a direct relationship between the coefficients of the polynomial and the initial values of the solution and
its derivatives.

Thus, the first sum in Equation (5) is fully determined. We are left with finding the coefficients cj for j =
n, n+ 1, . . . ,m. The expression in Equation (5) can now be rewritten as:

u1(t) = u(t)−
n∑
i=0

ai

n−1∑
j=i

cj
tj−i

(j − i)!
=

n∑
i=0

ai

m∑
j=n

cj
tj−i

(j − i)!
=

m∑
j=n

n∑
i=0

ai
tj−i

(j − i)!
cj . (6)

We recall that the input dataset consists of a point cloud (tk, u(tk)) for k = 1, 2, . . . ,M , where M > m−n+1.
By substituting these points into Eq. (6), we obtain an overdetermined system of equations

u1(tk) = u(tk)−
n∑
i=0

n−1∑
j=i

aicj
tj−ik

(j − i)!
=

m∑
j=n

n∑
i=0

ai
tj−ik

(j − i)!
cj . (7)

This system can be expressed in matrix form as

û = Aĉ,

where

[û]k = u(tk)−
n∑
i=0

n−1∑
j=i

aicj
tj−ik

(j − i)!
, [A]k,j−n+1 =

n∑
i=0

ai
tj−ik

(j − i)!
, [ĉ]j−n+1 = cj ,

for k = 1, 2, . . . ,M and j = n, n+ 1, . . . ,m.
To determine the unknown coefficients, we solve the system using the least squares method. In matrix form, this

is expressed as
ĉ = (ATA)−1AT û.

With this, all the unknown coefficients cj are obtained, and the polynomial

P (t) =

m∑
j=0

cj
tj

j!

becomes the model solution of Eq. 2.
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A. Example 1

We consider Type a differential equation. The differential equation is solved using a polynomial regression model.
We employ a polynomial of degree m = 15 and M = 10000 ordered pairs (tk, u(tk)), where the samples tk are
taken from a uniform distribution. The interval of interest is the segment [0, 4].

Figure 2a illustrates the solution obtained using the polynomial regression model, the exact solution, and their
difference (the error). In Figure 2b, the derivatives and their difference (error) is shown.

We observe that the model, with only 16 parameters, provides an excellent approximation of the exact solution.

B. Example 2

Similar to the previous example, we consider the differential equation

x′(t) + 2x(t) = e−2t,

x(0) = 0.

This time, the input function matches the natural frequency of the homogeneous solution. The same number of
parameters is used as in the previous example. The solution is given by

x(t) = te−2t.

In Figure 3, we observe both the polynomial regression and exact solutions, as well as their derivatives.
As in the previous case, we see that the model, with only 16 parameters, provides a good approximation of the
exact solution.

C. Example 3

In the final motivational example, we analyze Type c differential. This equation represents a system with damping
and periodic behavior due to the presence of oscillatory components. We maintain the same model parameters as
in the previous examples, where the polynomial regression approach is utilized to approximate the solution.

In Figure 4, we compare the numerical solution obtained through the polynomial regression model with the exact
analytical solution. The figure also includes comparisons of the first and second derivatives, which help illustrate
how well the model captures both the dynamic behavior and the rate of change within the system.

As with the previous examples, we observe an excellent match between the polynomial regression model and the
exact solution, even with only 16 parameters in the model. The differences between the polynomial approximation
and the exact solution, as well as their derivatives, are minimal, indicating that the regression model effectively
captures both the steady-state and transient behaviors of the system.

(a) Polynomial regression and exact solution (b) Derivatives and their difference

Fig. 2: Polynomial regression model vs. exact solution and their errors
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(a) Polynomial regression and exact solution (b) Derivatives and their difference

Fig. 3: Polynomial regression model vs. exact solution and their errors

(a) Polynomial regression and exact so-
lution

(b) First derivatives and their difference (c) Second derivatives and their differ-
ence

Fig. 4: Comparison of the polynomial regression model with the exact solution and their respective errors.

Motivated by the idea that a small number of parameters can be effectively utilized to solve differential equations
through a simple regression model, we extend our research toward the modification and implementation of neural
network designs. Our goal is to develop networks that, with a small number of parameters, can efficiently and
accurately describe natural phenomena governed by differential equations. By leveraging this approach, we aim
to achieve high accuracy while maintaining computational efficiency, providing a robust framework for modeling
complex dynamic systems across various fields of science and engineering.

V. NEURAL NETS

In this section, we present and test neural network architectures that consist of a small number of learnable
parameters while effectively solving differential equations. Furthermore, we compare these architectures with the
MLP network and the SIREN paradigm, which utilizes periodic activation functions.

A. Horner Scheme

As demonstrated earlier, a simple polynomial regression model can effectively describe solutions to differential
equations. Motivated by this concept, we further build upon the idea of representing a polynomial using Horners
scheme, which allows for efficient polynomial evaluation with minimal computational overhead

Ph(t) = a0 + t (a1 + t (a2 + · · ·+ t (am−1 + amt) · · · )) . (8)

Figure 5a illustrates the Basic Horner Block (BHB), consisting of a single learnable parameter ai. The entire
Horner Network (HN) architecture is depicted in Figure 5b. This architecture serves as the core of our neural
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network design. For solving an n-th order differential equation, we assume that the initial conditions are of the
same form as those in the motivational examples. The parameters a0, a1, . . . , an−1 are derived from terms involving
higher-order polynomial terms. By embedding these initial conditions directly into the model, we reduce the number
of learnable parameters, thereby improving learning efficiency and convergence speed.

The input data is given as a set of points (tk, u(tk)) with M = 200. We test the network on three types of
differential equations. To train the neural networks, we employ the Adam optimizer. The starting learning rate is
set to 10−3, and the networks are trained for 10,000 epochs.

The loss function we minimize is defined as

Lloss =
1

M

M∑
i=1

(
F (ti,N (ti),

d

dt
N (ti), ...,

dn

dtn
N (ti))− u(ti)

)2

,

where N denotes the neural network model.
The initial conditions are embedded in the model through the parameters a0 for first-order differential equations

(Types a and b) and a0 and a1 for the second-order equation (Type c).

a0 = N (0) = x(0) = x0

a1 =
d

dt
N (0) = x′(0) = x1

This embedding reduces the number of learnable parameters while ensuring that the initial conditions are met
exactly.

For each differential equation, we present the solution given by the neural network, along with its first and second
derivatives, which are also computed using the network representation. We use a neural network with 10 learnable
parameters for differential equations of Types 1 and 2, and 13 learnable parameters for Type 3. Figure 6 shows the
network-predicted solutions compared to the exact solutions for each differential equation, along with comparisons
of their first and second derivatives.

We observe that the solutions obtained using only 10 or 13 learnable parameters closely match the exact solutions,
demonstrating the effectiveness of the proposed architecture.

When compared to the baseline models presented in Section III, we observe that our proposed paradigm utilizes
significantly fewer learning parameters (approximately one order of magnitude) while achieving lower error rates
by nearly three orders of magnitude. This remarkable improvement in both efficiency and accuracy demonstrates
the effectiveness of our approach in solving differential equations with minimal computational resources.

B. Cheby

In this example, we use Chebyshev polynomials of the first kind as the basis for the neural network model. The
Chebyshev polynomials of the first kind are defined as Tn(cos(t)) = cos(nt), or recursively as

T0(t) = 1,

T1(t) = t,

Tn+1(t) = 2tTn(t)− Tn−1(t).
(9)

(a) Basic Horner Block (BHB) (b) Horner Network

Fig. 5: Basic Horner Block and Horner Network
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(a) Type 1 - solution (b) Type 1 - first derivative (c) Type 1 - second derivative

(d) Type 2 - solution (e) Type 2 - first derivative (f) Type 2 - second derivative

(g) Type 3 - solution (h) Type 3 - first derivative (i) Type 3 - second derivative

Fig. 6: Comparison of solutions and their derivatives predicted by the Horner neural network with the exact solutions
for the three types of differential equations.

The solution model is represented by a neural network expressed as a linear combination of Chebyshev polynomials

Pc(t) =

m∑
i=0

biTi(t), (10)

where bi are the learnable parameters of the model.
We apply this network to solve the differential equation of Type a, using the same hyperparameters and learning

scheme as in the Horner network example. However, in this case, we incorporate the initial conditions into the loss
function, defined as

Lloss =
1

M

M∑
i=1

(
F (ti,N (ti),

d

dt
N (ti), ...,

dn

dtn
N (ti))− u(ti)

)2

+

n−1∑
j=0

λj

∣∣∣∣ djdtjN (0)− xj
∣∣∣∣ . (11)

For our first-order differential equation, only one term from the second summation in the loss function is necessary.
This term corresponds to the hyperparameter λ0, set to 0.1.
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Figure 7 presents the results. We observe that the Chebyshev polynomial-based network yields results very
similar to those of the Horner network. The magnitude of errors for the original solution, first derivative, and
second derivative is of the same order in both models. Moreover, when applying the Chebyshev-based network to
other types of differential equations, the results remain consistent with those of the Horner network, demonstrating
the robustness of both approaches.

(a) Type 1 - solution (b) Type 1 - first derivative (c) Type 1 - second derivative

Fig. 7: Comparison of the solution and its derivatives predicted by the Chebyshev polynomial-based network with
the exact solutions.

C. PDE - Horner Network

In addition to ordinary differential equations that describe phenomena dependent on a single variable (e.g., time,
position, temperature), many natural processes are influenced by multiple variables simultaneously. Such phenomena
are modeled by partial differential equations (PDEs).

We first explain how to generalize the 1D Horner network model presented in Section V.A to handle two variables.
A general polynomial of order n in two variables can be expressed as

P2(x, y) = P1,n(x) + y · P1,n−1(x) + y2 · P1,n−2(x) + · · ·+ yn · P1,0(x) =

n∑
i=0

yiP1,n−i(x),

where P1,k(x) are polynomials of order k in a single variable. This expression can be rewritten using Horners
scheme as

P2(x, y) = P1,n(x) + y
(
P1,n−1(x) + y

(
P1,n−2(x) + · · ·+ y

(
P1,1(x) + y · P1,0(x)

)
...
))
.

Each polynomial P1,k(x) can be implemented using the Horner network architecture introduced in Section V.A,
denoted as H(P1,k). Moreover, the same architectural design generalizes to higher dimensions. The learnable
parameters a0, a1, . . . , am from Fig. 5 and Eq. 8 are now entire neural networks H(P1,k).

We implemented this extended model to solve the initial-boundary value problem for the heat equation

∂u

∂t
− k∂

2u

∂x2
= 0,

u(x, 0) = f(x),

u(0, t) = u(L, t) = 0,

(12)

where we set k = 0.1, L = 1, and f(x) = sin(πx). The exact solution to this PDE is

u(x, t) = sin(πx)e−0.1π
2t.

The input data consists of a point cloud (xi, ti, g(xi, ti)) for i = 1, 2, . . . ,M1, where g(x, t) represents the excitation.
The initial and boundary conditions are also provided as point clouds

(xj , 0, f(xj)), j = 1, 2, . . . ,M2,
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(0, tk, h1(tk)), k = 1, 2, . . . ,M3,

(L, tp, h2(tp)), p = 1, 2, . . . ,M4.

In our example, we used M1 = 5000 and M2 =M3 =M4 = 2500. The right-hand side of the PDE is set to zero
(g(xi, ti) = 0) because the equation is homogeneous. The initial condition is f(xj) = sin(πxj), and the boundary
conditions are h1(tk) = 0 and h2(tp) = 0. The initial and boundary conditions are enforced directly through the
loss function

Lloss =
1

M1

M1∑
i=1

(
F (ti,N (ti),

d

dt
N (ti), ...,

dn

dtn
N (ti))

)2

+
λ

M2

M2∑
j=1

(N (xj , 0)− f(xj))2+

µ

M3

M3∑
k=1

(N (0, tk)− h1(tk))2 +
ν

M4

M4∑
p=1

(N (L, tp)− h2(tp))2 .

We set the hyperparameters as λ = 0.5 and µ = ν = 0.25. The total number of learnable parameters in the model
is 45. Training is performed as described previously.

Fig. 8 compares the solution obtained from the neural network with the exact solution. The results demon-
strate that the error is minimal despite using only 45 parameters, highlighting the efficiency and accuracy of the
multidimensional Horner network.

(a) Horner model (b) Exact solution (c) Error

Fig. 8: Comparison of the solution obtained from the multidimensional Horner network with the exact solution of
the heat equation. The error is minimal, even with only 45 learnable parameters.

VI. SPLINE-LIKE MODEL

In this section, we extend the Horner network by introducing a spline-like approach to further reduce the
approximation error when solving differential equations. The key advantage of this approach lies in its ability
to balance accuracy with computational efficiency by keeping the number of learnable parameters to a minimum
(slightly higher than the baseline model), even as the model complexity increases.

This technique is particularly beneficial for problems involving complex differential equations, where traditional
single-network architectures may struggle to provide accurate solutions without a significant increase in the number
of parameters. By leveraging the spline-like approach, we achieve an efficient trade-off between model size and
accuracy, making it suitable for applications where computational resources are limited or precision is critical.

Let the interval of interest, where we solve the differential equation, be denoted as [c, d]. We partition this
interval into subintervals such that c = c0 < c1 < c2 < · · · < cl = d. On each subinterval Ci = [ci, ci+1], for
i = 0, 1, . . . , l − 1, we train a separate Horner network with a small number of parameters (corresponding to a
lower-order polynomial). By employing a spline-like approach, we ensure through the loss function that the overall
solution model belongs to the class Cj([c, d]) for a suitable value of j, ensuring continuity and smoothness.

This procedure is illustrated schematically in Fig. 9. The input value x is fed into a demultiplexer and logic
module, which selects the corresponding network HNi based on the subinterval Ci containing x. The output from
the selected network is then passed through a multiplexer to produce the output of the entire spline-like model.
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Thus, we have l Horner networks in total, with each network HNi responsible for learning the solution on its
respective subinterval Ci. As stated earlier, the loss function enforces the model to be of class Cj([c, d]).

We test this model on a Type a differential equation. In this case, the loss function is defined as

Lloss =
1

M

M∑
i=1

(
F (ti,N (ti),

d

dt
N (ti), ...,

dn

dtn
N (ti))− u(ti)

)2

+ λ0 |N (0)− x(0)|+

l−2∑
j=0

µj |Nj(tj,r)−Nj+1(tj+1,l)|+
l−2∑
j=0

νj

∣∣∣∣ ddtNj(tj,r)− d

dt
Nj+1(tj+1,l)

∣∣∣∣ .
Here, tj,l and tj,r denote the left and right endpoints of subinterval Cj . The third and fourth terms in the loss

function enforce continuity of the solution and its first derivative at the subinterval boundaries.
For training the Type a differential equation solution, we used M = 200 data points. The hyperparameters were

set to λ0 = 1, µj = 0.5, and νj = 0.5. The subintervals were chosen as [0, 1], [1, 2], [2, 3], and [3, 4], resulting
in a total of 4 Horner networks. Each network is characterized by 8 learnable parameters. We employ the Adam
optimizer and the starting learning rate is set to 10−3. The network is trained for 10,000 epochs.

x P(x)

Demux Mux

...

Logic

HN0

HN1

HNl-1

Fig. 9: Spline-like model architecture. The input value x determines which Horner network HNi is selected based
on the interval it falls into, ensuring a piecewise smooth representation of the solution.

The results are presented in Fig. 10. We observe that, in this example, the spline-like model achieves at least an
order of magnitude improvement in accuracy over the baseline model presented in Section V.A.

(a) Type 1 - solution (b) Type 1 - first derivative (c) Type 1 - second derivative

Fig. 10: Comparison of the solution and its derivatives predicted by the spline-like Horner network with the exact
solutions. The results demonstrate improved accuracy and smoothness across the subinterval boundaries.
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VII. CONCLUSION

In this paper, we have demonstrated that natural phenomena can be successfully modeled and solved using
neural networks with a minimal number of learnable parameters. By leveraging carefully designed architectures,
we have shown that even with a significantly reduced parameter count, accurate and reliable solutions to differential
equations can be achieved.

Our models, based on the Horner scheme and Chebyshev polynomials, achieved exceptional results with only
around 10 learnable parameters. These models exhibited improvements of nearly three orders of magnitude in
accuracy compared to standard MLP neural networks and networks with periodic activation functions, both of
which typically require at least twice the number of parameters. This highlights the efficiency of our proposed
architectures in scenarios where computational resources and parameter budgets are limited.

The spline-like approach further improved accuracy by effectively reducing the approximation error while only
minimally increasing the number of learnable parameters. This method ensured continuity and smoothness across
subinterval boundaries, making it particularly effective for applications requiring fine-grained precision and dynamic
adaptation to problem complexity.

By solving the heat equation, we generalized the Horner-based approach to two-dimensional domains. Our
results demonstrated that even with as few as 50 learnable parameters, we could accurately solve partial differential
equations (PDEs). This shows that our method is not limited to one-dimensional problems but can be extended to
more complex multidimensional scenarios with minimal computational overhead.

Further reductions in the number of learnable parameters in the spline-like model can be achieved by embedding
boundary conditions of subintervals directly into the neural network architecture. This eliminates the need to enforce
continuity or derivative constraints through the loss function, thus simplifying the training process and improving
efficiency. We also propose potential extensions of the Horner-based approach to higher-order PDEs, offering
exciting opportunities for addressing complex dynamic systems in future work.

An additional challenge lies in integrating the spline-like approach into models that solve complex partial
differential equations (PDEs). This involves extending the current architecture to handle higher-dimensional domains
and ensuring that continuity, smoothness, and physical boundary conditions are maintained directly through the
network design. Overcoming this challenge will allow for scalable solutions to PDEs in fields such as fluid dynamics,
electromagnetism, and thermodynamics, where traditional methods often face limitations in terms of parameter
efficiency and computational complexity. A further challenge involves learning suitable subintervals for 1D cases,
or patches in higher dimensions, to minimize the number of parameters or reduce the error, rather than keeping
them fixed. Addressing these challenges will be a step in further advancing neural network-based approaches for
scientific modeling.

In conclusion, our work provides a robust and scalable framework for solving differential equations using compact
neural networks. Future efforts will focus on generalizing the approach to higher-order PDEs and exploring real-
world applications in physics, engineering, and computational science, where accuracy, parameter efficiency, and
adaptability are critical.
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